If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12m^2-8m-64=0
a = 12; b = -8; c = -64;
Δ = b2-4ac
Δ = -82-4·12·(-64)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-56}{2*12}=\frac{-48}{24} =-2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+56}{2*12}=\frac{64}{24} =2+2/3 $
| 15+5n=100 | | 0=-16t^2+150t+714 | | X+35=8x+17 | | r/2+18=17 | | r2+18=17 | | 3f(2)=-2 | | 6/x=2+2x | | -6/x=2 | | v/5–1=1 | | s/2+1=10 | | X-2(-3x+1)=2 | | 8u+3=-5 | | x(x−5)=150 | | k2–1=1 | | -12+4x=5(x-3) | | 2x+2x+3=3 | | c8–1=1 | | 70+4x=180 | | m2+5=-2 | | 376.38=7y+5y | | X^2+81=4x | | u*7=14 | | 7*r=7 | | m*5=25 | | 3*y=3 | | 9r–14=4 | | 10u+16=6 | | 3(x+5)=x+2(3+x) | | -4+2k=-6 | | -5+5s=15 | | 2(1y+-6)=-16 | | 3g+2/5=-1/5 |